### PRACTICE SET 50 [PAGE 93]

### Practice Set 50 | Q 2 | Page 93

Which of the options given below is the square of the binomial

$$\left(8-\frac{1}{x}\right)?$$

Options

$$64 - \frac{1}{x^2}$$

$$64 + \frac{1}{x^2}$$

$$64 - \frac{16}{x} + \frac{1}{x^2}$$

$$64 + \frac{16}{x} + \frac{1}{x^2}$$

Solution:

$$64 - \frac{16}{x} + \frac{1}{x^2}$$

# **Explanation:**

The given binomial is  $\left(8 - \frac{1}{x}\right)$ .  $\left(8 - \frac{1}{x}\right)^2$ 



$$= (8)^{2} - 2 \times (8) \times \left(\frac{1}{x}\right) + \left(\frac{1}{x}\right)^{2} \dots$$
$$\left[\because (a - b)^{2} = a^{2} - 2ab + b^{2}\right]$$
$$= 64 - \frac{16}{x} + \frac{1}{x^{2}}$$
Hence, the correct answer is option  $64 - \frac{16}{x} + \frac{1}{x}$ 

#### Practice Set 50 | Q 3 | Page 93

Of which of the binomials given below is  $m^2n^2 + 14mnpq + 49p^2q^2$  the expansion?

- 1. (m + n) (p + q)
- 2. (mn pq)
- 3. (7mn + pq)
- 4. (mn + 7pq)

Solution: Let us check each of the given options.

(m + n)(p + q)= m(p + q) + n(p + q)= mp + mq + np + nq So, it is not the correct option.  $(mn - pq)^2$  $= (mn)^2 - 2 \times (mn) \times (pq) + (pq)^2 \dots [: (a - b)^2 = a^2 - 2ab + b^2]$  $= m^2 n^2 - 2mnpq + p^2 q^2$ So, it is not the correct option.  $(7mn + pq)^2$  $= (7mn)^2 + 2 \times (7mn) \times (pq) + (pq)^2 \dots [\because (a + b)^2 = a^2 + 2ab + b^2]$  $= 49m^2n^2 + 14mnpq + p^2q^2$ So, it is not a correct option.  $(mn + 7pq)^2$  $= (mn)^2 + 2 \times (mn) \times (7pq) + (7pq)^2 \dots [\because (a + b)^2 = a^2 + 2ab + b^2]$  $= m^2 n^2 + 14mnpq + 49p^2q^2$ So, it is a correct option.

Hence, the correct answer is option  $(mn + 7pq)^2$ .

#### Practice Set 50 | Q 4.1 | Page 93

Use an expansion formula to find the value.

(997)<sup>2</sup>

**Solution:** It is known that,  $(a + b)^2 = a^2 + 2ab + b^2$  and  $(a - b)^2 = a^2 - 2ab + b^2$ 

 $(997)^{2} = (1000 - 3)^{2} = (1000)^{2} - 2 \times 1000 \times 3 + (3)^{2} = 1000000 - 6000 + 9 = 994009$ 

### Practice Set 50 | Q 4.2 | Page 93

Use an expansion formula to find the value.

 $(102)^2$ 

**Solution:** It is known that,  $(a + b)^2 = a^2 + 2ab + b^2$  and  $(a - b)^2 = a^2 - 2ab + b^2$ 

 $(102)^2$ =  $(100 + 2)^2$ =  $(100)^2 + 2 \times 100 \times 2 + (2)^2$ = 10000 + 400 + 4= 10404

#### Practice Set 50 | Q 4.3 | Page 93

Use an expansion formula to find the value.

 $(97)^2$ 

**Solution:** It is known that,  $(a + b)^2 = a^2 + 2ab + b^2$  and  $(a - b)^2 = a^2 - 2ab + b^2$ 

 $(97)^{2} = (100 - 3)^{2} = (100)^{2} - 2 \times 100 \times 3 + (3)^{2} = 10000 - 600 + 9 = 9409$ 

### Practice Set 50 | Q 4.4 | Page 93

Use an expansion formula to find the value.

 $(1005)^2$ 

**Solution:** It is known that,  $(a + b)^2 = a^2 + 2ab + b^2$  and  $(a - b)^2 = a^2 - 2ab + b^2$ 

 $(1005)^2$ =  $(1000 + 5)^2$ =  $(1000)^2 + 2 \times 1000 \times 5 + (5)^2$ = 1000000 + 10000 + 25= 1010025





### PRACTICE SET 51 [PAGE 93]

### Practice Set 51 | Q 1.1 | Page 93

Use the formula to multiply the following.

$$(x + y) (x - y)$$

**Solution:** It is known that,  $(a + b) (a - b) = a^2 - b^2$ .

$$(x + y) (x - y)$$
  
=  $(x)^2 - (y)^2$   
=  $x^2 - y^2$ 

### Practice Set 51 | Q 1.2 | Page 93

Use the formula to multiply the following.

(3x - 5)(3x + 5)

**Solution:** It is known that,  $(a + b) (a - b) = a^2 - b^2$ .

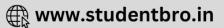
$$(3x - 5) (3x + 5)$$
  
=  $(3x)^2 - (5)^2$   
=  $9x^2 - 25$ 

### Practice Set 51 | Q 1.3 | Page 93

Use the formula to multiply the following.

**Solution:** It is known that,  $(a + b) (a - b) = a^2 - b^2$ .

(a + 6) (a - 6)=  $(a)^2 - (6)^2$ =  $a^2 - 36$ 


### Practice Set 51 | Q 1.4 | Page 93

Use the formula to multiply the following.

$$\left(\frac{x}{5}+6\right)\left(\frac{x}{5}-6\right)$$

**Solution:** It is known that,  $(a + b) (a - b) = a^2 - b^2$ .





$$\left(\frac{x}{5} + 6\right)\left(\frac{x}{5} - 6\right)$$
$$= \left(\frac{x}{5}\right)^2 - (6)^2$$
$$= \frac{x^2}{25} - 36$$

#### Practice Set 51 | Q 2.1 | Page 93

Use the formula to find the value.

502 × 498

**Solution:** It is known that,  $(a + b) (a - b) = a^2 - b^2$ .

 $502 \times 498$ = (500 + 2) × (500 - 2) = (500)<sup>2</sup> - (2)<sup>2</sup> = 250000 - 4 = 249996

#### Practice Set 51 | Q 2.2 | Page 93

Use the formula to find the value.

97 × 103

**Solution:** It is known that,  $(a + b) (a - b) = a^2 - b^2$ .

 $97 \times 103$ = (100 - 3) × (100 + 3) = (100)<sup>2</sup> - (3)<sup>2</sup> = 10000 - 9 = 9991

#### Practice Set 51 | Q 2.3 | Page 93

Use the formula to find the value.

54 × 46

**Solution:** It is known that,  $(a + b) (a - b) = a^2 - b^2$ .

```
54 \times 46
= (50 + 4) × (50 - 4)
= (50)<sup>2</sup> - (4)<sup>2</sup>
= 2500 - 16
= 2484
```





### Practice Set 51 | Q 2.4 | Page 93

Use the formula to find the value.

98 × 102

**Solution:** It is known that,  $(a + b) (a - b) = a^2 - b^2$ .

 $98 \times 102$ = (100 - 2) × (100 + 2) = (100)<sup>2</sup> - (2)<sup>2</sup> = 10000 - 4 = 9996

### PRACTICE SET 52 [PAGE 94]

### Practice Set 52 | Q 1.1 | Page 94

Factorise the following expression and write in the product form.

201a<sup>3</sup>b<sup>2</sup>

Solution: 201a<sup>3</sup>b<sup>2</sup>

 $= 3 \times 67 \times a \times a \times a \times b \times b$ 

Practice Set 52 | Q 1.2 | Page 94

Factorise the following expression and write in the product form.

91xyt<sup>2</sup>

Solution: 91xyt<sup>2</sup>

 $= 7 \times 13 \times x \times y \times t \times t$ 

### Practice Set 52 | Q 1.3 | Page 94

Factorise the following expression and write in the product form.  $24a^2b^2$  **Solution:**  $24a^2b^2$ =  $2 \times 2 \times 2 \times 3 \times a \times a \times b \times b$ 

### Practice Set 52 | Q 1.4 | Page 94

Factorise the following expression and write in the product form.  $\ensuremath{tr^2 s^3}$ 





Solution: tr<sup>2</sup>s<sup>3</sup>

 $= t \times r \times r \times s \times s \times s$ 

PRACTICE SET 53 [PAGE 94]

### Practice Set 53 | Q 1.01 | Page 94

Factorise the following expression.  $p^2 - q^2$  **Solution:**  $p^2 - q^2$   $= (p)^2 - (q)^2$  $= (p + q) (p - q) \dots [\because (a + b) (a - b) = a^2 - b^2]$ 

### Practice Set 53 | Q 1.02 | Page 94

Factorise the following expression.

 $4x^2 - 25y^2$ 

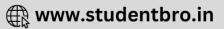
Solution:  $4x^2 - 25y^2$ 

 $= (2x)^2 - (5y)^2$ 

=  $(2x + 5y) (2x - 5y) \dots [\because a^2 - b^2 = (a + b) (a - b)]$ 

## Practice Set 53 | Q 1.03 | Page 94

Factorise the following expression.


 $y^2 - 4$ Solution:  $y^2 - 4$ =  $(y)^2 - (2)^2$ =  $(y + 2) (y - 2) \dots [\because a^2 - b^2 = (a + b) (a - b)]$ 

## Practice Set 53 | Q 1.04 | Page 94

Factorise the following expression.

$$p^2 - \frac{1}{25}$$

Solution:



$$p^{2} - \frac{1}{25}$$
  
=  $(p)^{2} - \left(\frac{1}{5}\right)^{2}$   
=  $\left(p + \frac{1}{5}\right)\left(P - \frac{1}{5}\right)$  .....[:  $a^{2} - b^{2} = (a + b)(a - b)$ ]

### Practice Set 53 | Q 1.05 | Page 94

Factorise the following expression.

$$9x^2-\frac{1}{16}y^2$$

Solution:

$$9x^{2} - \frac{1}{16}y^{2}$$
  
=  $(3x)^{2} - \left(\frac{1}{4}y\right)^{2}$   
=  $\left(3x + \frac{1}{4}y\right)\left(3x - \frac{1}{4}y\right)$ .....[: a<sup>2</sup> - b<sup>2</sup> = (a + b) (a - b)]

## Practice Set 53 | Q 1.06 | Page 94

Factorise the following expression.

$$x^2 - \frac{1}{x^2}$$

Solution:

$$\begin{aligned} \mathbf{x}^2 &- \frac{1}{\mathbf{x}^2} \\ &= (\mathbf{x})^2 - \left(\frac{1}{\mathbf{x}}\right)^2 \\ &= \left(\mathbf{x} + \frac{1}{\mathbf{x}}\right) \left(\mathbf{x} - \frac{1}{\mathbf{x}}\right) \dots \left[\because \mathbf{a}^2 - \mathbf{b}^2 = (\mathbf{a} + \mathbf{b}) (\mathbf{a} - \mathbf{b})\right] \end{aligned}$$

# Practice Set 53 | Q 1.07 | Page 94

Factorise the following expression.

a²b− ab

Solution: a<sup>2</sup>b- ab

= ab (a - 1)

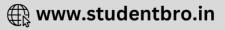
### Practice Set 53 | Q 1.08 | Page 94

Factorise the following expression.

 $4x^2y - 6x^2$ 

**Solution:**  $4x^2y - 6x^2$ 

 $= 2x^2(2y - 3)$ 


## Practice Set 53 | Q 1.09 | Page 94

Factorise the following expression.

$$\frac{1}{2}y^2 - 8z^2$$

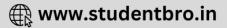
Solution:





$$\frac{1}{2}y^{2} - 8z^{2}$$

$$= \frac{1}{2}(y^{2} - 16z^{2})$$


$$= \frac{1}{2}[(y)^{2} - (4z)^{2}]$$

$$= \frac{1}{2}(y + 4z)(y - 4z) \dots [\because a^{2} - b^{2} = (a + b)(a - b)]$$

### Practice Set 53 | Q 1.1 | Page 94

Factorise the following expression.  $2x^2 - 8y^2$  **Solution:**  $2x^2 - 8y^2$   $= 2 (x^2 - 4y^2)$   $= 2 [(x)^2 - (2y)^2]$ = 2 (x + 2y) (x - 2y)



